Objects of Research: Benjamin Peters
For the first post in our „Objects of Research“ series, we interviewed c:o/re alumni fellow Benjamin Peters, who works on artful intelligence, broadly taken across the long Soviet century.
“By saying that I study ‘artful intelligence’, which I mean only as a half joke, I take seriously the propositions to my career as a media scholar that…
1. As the first image suggests, human artfulness can be found all around, such as this snapshot of a wall on a side street not far from the Cultures of Research at the RWTH.
2. Sometimes architectural masterpieces that represent more than the sharp angles of twentieth-century modernism are all about us, such as this bus stop on the way to Cultures of Research in Aachen. Any study of science and technology has to ask, what does it mean? Sources do not speak for themselves.
3. Sometimes artificial intelligence is best found in letting people be people, such as a doodle here in a sketchbook. Straight lines do not always precipitate straightness.
4. I study how science, technology, and artificial intelligence has been understood in different times and places, such as this remote-controlled robot that failed in the immediate aftermath of the Chernobyl explosion in 1986 in Soviet Ukraine, which helps unstiffen, enliven, and sober our imagination of what may already be the case today and could be the case tomorrow.”
Walter Benjamin Fellowships for Anna Laktionova and Svitlana Shcherbak
c:o/re fellows Anna Laktionova and Svitlana Shcherbak have both received a fellowship from the Walter Benjamin Programme, funded by the Deutsche Forschungsgemeinschaft (DFG), which enables them to continue working independently on their research projects at c:o/re even after the end of their c:o/re fellowship.
We would like to congratulate both of them and are delighted to be able to continue working together under one roof.
Here is what Anna Laktionova wants to do during the scholarship and what it means to her:
My project “Towards the agency based philosophy of (advanced) technology” is for me a very inspiring possibility to continue elaborating the maintained approach of Philosophy of Action and Agency within such nowadays fields as Philosophy of Technology, Philosophy of Engineering, STS etc. It involves theoretical and practical philosophical methodological platforms; allows me to continue professional grows and integrating into western Philosophical and Scientific circles including inter-, cross-, trans- disciplinary levels, for example, visit and participate in events of RWTH’s Institute of Industrial Engineering, Center for Construction Robotics, The RWTH Chair Individual and Technology, other labs. I plan to concentrate on such problematic plots as: agency-based philosophy of (advanced) technologies and ongoing technological transformations towards advanced technologies; varieties of types, levels, scales of machinic actions and human-robot interactions; machine learning methods and adaptive robots; problematic machinic actions and ethical regulations for trustworthy adaptive robotics; changing of the conceptual angle of view from technology descriptions to philosophy of action and agency; aligning man-machine interactivity.
From the personal side, the fellowship gives me possibility to continue to save my (now almost 3-years old daughter) from the awful war taking place in Ukraine. I enormously appreciate understanding, support, help from colleagues, staff and people in Aachen.
Svitlana Shcherbak will work on her research project entitled “Modernization Theory: Between Science and Politics. Case of Russia”:
The Conception of the Foreign Policy of the Russian Federation, adopted in March 2023, for the first time defines Russia as a “civilization-state”. Russia is seen there as a conservative and technologically oriented sovereign state opposed to the “West”. Russia’s official ideology combines a conservative political agenda with the idea of technological modernization. It is a paradigm shift that has not come out of nowhere. This two-year research project investigates the academic (i.e., social science) and political discourse gradually introducing this shift in the post-Soviet space in relation to Western modernization theory. It examines the main shifts in the meaning of the “core concepts” of modernization theory, such as “democracy”, “development”, “freedom”, etc., in the Russian cultural and political context since 1990, compared to their original formulation in the Western social science, and how social theory has become an important ideological concept in Russian politics. To achieve this goal, the research is based on a qualitative discourse analysis. The theory of modernization was chosen because it is a grand theory that offers a broad vision of history and social development and is an important part of the social imagination. Modernization theory reflects not only the deep assumptions of the societies in which it emerges, but also those of the recipient societies. The case of Russia is particularly interesting, because the concept of modernization retains a central place in Russian political discourse, even though the basic assumptions of modernization theory contradict Russia’s self-description.
Get to know our fellows: Marcus B. Carrier
Get to know our current fellows and gain an impression of their research.
In a new series of short videos, we asked them to introduce themselves, talk about their work at c:o/re, the impact of their research on society and give book recommendations.
You can now watch the first video of the historian of science Marcus B. Carrier on our Youtube channel:
“The simple is complex”: Professor Giora Hon starts the c:o/re 2023 lecture series on Complexity
On April 12, 2023, the 5th c:o/re lecture series started off. After c:o/re director Gabriele Gramelsberger welcomed attendees and introduced the speaker, Professor Giora Hon delivered his talk, From Reciprocity of Formulation to Symbolic Language: A Source of Complexity in Scientific Knowledge
Professor Hon introduced his notion of epistemic complexity, which refers to what may be considered simple, rather than complex. The talk was directed at clarifying the oxymoron “the simple is complex”. Professor Hon does so in light of three developments in the history of physics:
- the analogy between heat and electricity, following William Thomson
- the reciprocity of text and symbolic formulation, following James C. Maxwell
- liberating symbolic formulation from theory, following Heinrich Hertz
Professor Hon argued that, following this trajectory of ideas in history of physics, in Hertz the complete separation of formal theory and equations can be observed.
Fernando Pasquini’s proposal for an ergonomics of data science practices
On December 14, 2022, c:o/re fellow Fernando Pasquini Santos explained his proposal Towards an ergonomics of data science practices, as part of the 2022/2023 c:o/re lecture series. While he acknowledged that the term is arguably outdated, Pasquini developed a broadly encompassing notion of ergonomics, spanning across modalities and modes of human-computer interaction. In this endeavour, Pasquini started by asking “how does it feel to work with data?” Tackling the question, he distinguished between challenges and directions in technology usability assessments.
In what was a rich and broadly encompassing study, Pasquini found particular inspiration in Coeckelbergh (2019), who notices a tradition in philosophy of technology that equates skilful acting with having a good life.
In this light, Pasquini proposed a “critical mediality” perspective in data science, that covers considerations from abstraction in data work to mathematical constructivism, embodiment and to blackboxing.
References
Coeckelbergh, Mark. 2019. Technology as Skill and Actvity:Revisitng the Problem of Alienation. Techné: Research in Philosophy and Technology 16(3): 208–230.
Software as research culture: new study group at c:/ore, focused on software
The work that this group pursues aligns with that of the Computational Science Studies Lab, set up by Professor Gabriele Gramelsberger, Chair for Philosophy of Science and Technology (Humtec, RWTH Aachen University) and Director of c:o/re. The work of c:o/re fellow Alexandre Hocquet and his co-author Frederic Wieber on computational chemistry has been instrumental to setting the directions of this research group. An important observation by Alexandre Hocquet, through which this group is working to conceptualize software, is that software is not just code. It involves much more, being a cultural practice. Also, a critical insight came from Gabriele Gramelsberger who stated that “software is an alien”.
On November 8 and 9 the Engineering Practices Workshop: New Horizons in the Social Study of Science and Software took place at c:o/re. This workshop marks the formation of a group, within c:o/re, focused on software research. The group consists in former and current c:o/re fellows and c:o/re team members, all of whom share an interest for software studies, but coming from various angles.
The workshop started with two talks by c:o/re team members Dawid Kasprowicz on Managing the unmanageable: Is software engineering the art or science of scientific programming? and Phillip H. Roth on Scientific communication in the age of software: Sorting out materiality, community and infrastructure. c:o/re fellows Benjamin Peters and Arianna Borrelli acted as discussants to these presentations, opening then the debate to the entire group. Dawid Kasprowicz opened the question on how does scientific programming look like from a software engineering perspective, touching upon matters such as research reproducibility and the transferability software engineering knowledge. In his response, Benjamin Peters remarked that software in unmanageable in interesting ways. Analogies to previous technologies and practices are often improper, as software it is not 4-dimensional, but potentially (infinitely) n-dimensional.
Phillip H. Roth asked how do representations of science and, consequently, science itself, too, change through technological change?
These talks were followed by a roundtable consisting in several c:o/re team members and fellows. Each tackled software from a disciplinary angle.
On the second day of the workshop, the group tried to make a synthesis of the discussion and set the ground for a position paper on software on which they are now working.
Welcome new c:o/re fellows!
We are delighted to announce the fellows starting their projects at c:o/re this year! We are warmly welcoming Arianna Borelli, Anna Laktionova, Clarissa Ai Ling Lee, Benjamin Peters, Svitlana Shcherbak, Jan Cornelius Schmidt, Roland Wittje and Nelson Casimiro Zavale!
We hope that they will have a great time at c:o/re!
The Notebook pt. 2: “I liked the idea of carrying my research in just one bag”
Academic writing is a basic practice that does not start in writing up one’s research results for publishing. Right from the start of an idea for a research project, researchers are noting down things: thoughts, questions, observations, ideas. Let’s have a look at the often neglected but very central object that inhabits these very first materializations of research ideas: the notebook. How does the notebook of a researcher look like? How do practices of note taking change in the digital age? I asked some of the fellows at the Käte Hamburger Kolleg: Cultures of Research (c:o/re) about their habits of note taking.
Markus Pantsar
Markus Pantsar is a philosopher of mathematics and artificial intelligence at the University of Helsinki, Finland. As a senior grant researcher, he worked on the epistemology of mathematics and will continue to do so with a focus on arithmetic and geometrical cognition with a funding by the Finnish Cultural Foundation that starts in autumn 2022. In the meantime, Markus tackles questions of complexity, human cognition and intelligence with regard to the development of artificial intelligence, simulation and machine learning during his fellowship at c:o/re.
Stefanie Haupt: Markus, what is the most recent thing that you noted down in your notebook?
Markus Pantsar: [thinks for a short moment and checks his notebook] It was something I wrote down from last week’s workshop. I usually take notes only sparingly. They are mostly personal reminders of things that inspire me when listening to talks – for example names or books and papers.
Stefanie: Your notes are handwritten but on a digital devise, how does that work for you?
Markus: It works fine. I can either convert the pages to images or, and this is what I use mostly, the built-in AI transforms my handwriting to searchable type-written text. It just needs some editing afterwards. The software does not recognize, for example, names so easily. But otherwise, it works well for me.
Stefanie: And what happens after you convert the notes?
Markus: The software turns them into pdf-documents that I keep in different folders, for example, for conferences I attended. I also have a folder for my fellowship here in Aachen. Typically, I remember better where I heard interesting thoughts than when I heard them. Therefore, my folders follow a structure based on places rather than on pure chronology. I save everything in the cloud because I can see myself pouring coffee over my stuff [smiles].
Stefanie: I am looking at your desk right now and I see hardly any paper. When did you switch to the digital? Was it a conscious decision?
Markus: Yes, definitely. For me this is a very recent development. I bought this notebook in preparation for my fellowship in Aachen. I wanted something like this for a long time: a devise to write and to read digital papers and books on. Previously, I used to print articles and write into paper notebooks and they kept piling up in the bookshelf. But as a researcher you often have to move and switch places. I liked the idea of carrying my research in just one bag.
Stefanie: This is close to the ideal of the paperless office, which is also very ecological. Do you also see disadvantages compared to the analogue notebook?
Markus: Well, regarding the ecological factor you need to consider the production of such an electronic devise. Disadvantages – there aren’t many: The notebook won’t transform special symbols that the software does not recognize. For example, I use a kind of flash-symbol to mark points of disagreement with the arguments of others. Also, the notebook does not display colours, so whenever I read a paper and there is a coloured image, for example a graphic depiction of different activation areas in the brain, I am missing some of the information there. One disadvantage is also that for such a simple machine, it is still very expensive. It does not have internet access, aside from the cloud function for the files – but this is something I appreciate, actually: I can sit on the couch reading and not get distracted.
Stefanie: Did switching to digital change your practice of note taking somehow?
Markus: Now that we are talking about it, I would say: Yes, it did! Unlike with analogue notes, I have to go through the digital notes again to edit them after converting the text. This is necessary to find names and other keywords via the search function later. It has already become a kind of routine for me. And it also often prompts me to write down more about what I heard and inspires me to think deeper about it. I would say that now I am working more with my notes than before. But there is also a qualitative difference, in that my notes end up being more polished and easier to apply. I don’t think I will switch back to the analogue.
Stefanie: Thank you very much, Markus, for a short glimpse into your notebook!
The Notebook pt. 1: Taking Notes – “it’s a learned skill”
Producing, sharing, questioning, and contesting knowledge – in academia this is done mostly by writing and publishing papers. To make themselves heard in the academic world and to take part in scholarly debates, researchers have to write down their thoughts, ideas and suggestions to research problems and questions. Writing is an essential research practice. But rather than focussing on the finished product, the well composed text, edited, proof-read multiple times, peer reviewed, and published in a (most desirably high-impact) journal, let’s take a few steps back to the very beginning of a research project. What precedes even the “shitty first draft” of a written piece? I would like to look at the threshold where thoughts “materialize” and are written down for the first time. Let’s do this by shedding light on a particular object that is often overlooked when it comes to academic writing: the notebook. I interviewed some of the fellows at the Käte Hamburger Kolleg: Cultures of Research (c:o/re) about their note taking.
Catharina Landström
Catharina is an Associate Professor of Science and Technology Studies at Chalmers University in Gothenburg, Sweden. Prior to that, she was as senior researcher at the School of Geography and the Environment at the University of Oxford, England. Right from the start of her professional carrier, she has conducted a lot of field work, for example on water challenges such as flooding, draughts and water quality. At c:o/re she explores how environmental scientists present and convey results from- and tools of computer simulation modelling for decision making processes
Stefanie Haupt: Catharina, when I saw you with your notebook during the c:o/re Lunch Talks it really fascinated me how neatly you were taking notes. Your notebook has lined pages in an A4 format. Do you prefer a certain type of notebook?
Catharina Landström: I do take notes on any sort paper I can get hold of! Normally, I just use what I can find: binders that came as a kind of gift at conferences etc., or I use whatever I can find in the storage of the university. I prefer writing on lined paper. Squared paper does not really work for me. And blank paper – I get paralyzed when the page is empty! Papers with a column on the left side are quite nice for making comments. I like taking notes in wire bound notebooks. Then I can easily take out the page because, depending on the topics I am working on, I collect the pages on different piles. I also have different notebooks for different topics and tasks, for example for the different PhD projects that I supervise. The notebook you saw in the Lunch Talk is my c:o/re notebook.
Stefanie: When did you start taking notes and in which situations do you use your notebook? You did a lot of field work. Did you also bring a notebook when you were out in the field?
Catharina: Right from the beginning of my studies I took notes. But the way I do changed much over the time: I remember in my PhD project while working in the field, I took so many notes, I sometimes could not make sense out of them afterwards. The field is a difficult place for taking notes. It is a really stressful work. Everything that happens “passes” through you. In the field you are the tool. And notes are more than notes. So, I tried to capture everything. Today, I take less notes but they are more precise. It is really a learned skill.
Stefanie: So, what is it that you note down?
Catharina: Thoughts. Thoughts of others, my own thoughts while listening to a talk for example. My notes help me to remember better. For example, I note down what I discuss with my PhD students. I also write down ideas for project proposals. By going through them, my notes help me to further develop ideas.
Stefanie: Did you develop a kind of private system? Like a colour code? And how do you further process your notes?
Catharina: A colour code would require having a fixed set of colour pens with me all the time – so, no. But when I listen to talks and note down what I hear, I distinguish the thoughts of others from my own by putting mine in squared brackets. Questions that arise come in round brackets. The notes I take are only for myself. I switch to the digital when I want to further develop ideas for myself or when I want to share them with somebody else.
Stefanie: Do you keep your notebooks?
Catharina: I keep them for a while. Everything is time limited, you know. Then comes the time when you can either store your notebooks in a box in the attic or throw them away. Once I suggested to a friend to throw away the notes she took during an interview project in the 90s. She was really irritated by this suggestion.
Stefanie: You told me that you were wondering at some point if you might also switch to the digital for note-taking, too.
Catharina: Oh, I did. Everybody brings their (laptop)notebook to academic discussions today. I tried that for a while, too. But I noticed that I never go back to look at digital notes again [Catharina laughs]. I don’t know what it is, maybe it is the paper, the feel, the way you can browse through the pages. It has a different quality somehow.
Stefanie: Thank you, Catharina, for your time!
Introduction to the concepts of Open Science, Responsible Research and Innovation and Anticipatory Governance
RENÉ VON SCHOMBERG AND ANDONI IBARRA
Responsible Research and lnnovation (RRI) has become increasingly important since it was introduced as a cross cutting issue under the European Union (EU) Framework Programme for Research and Innovation “Horizon Europe” (2014-2020). Subsequently, it became an operational objective of the strategic plan for “Horizon Europe (2021-2027)”, the new EU Framework Programme for Research and Innovation. ln EU member states, there are also various initiatives supporting RRI, notably under schemes of national research councils (the United Kingdom, Norway, and the Netherlands, among others). The concept also resonated outside the EU, notably in the United States, and in China it became part of the national five-year plan for Science, Technology and Innovation.
However, there are a variety of approaches as for how it should be implemented. Scholars provide a variety of perspectives and assessments of what RRI need to address. However, all scholars generally share the notion that RRI requires a form of governance that will direct or re-direct innovation towards socially desirable outcomes. This initial definition that Von Schomberg provided in 2011 captures the commonalities of the field:
Responsible Research and Innovation is a transparent, interactive process by which societal actors and innovators become mutually responsive to each other with a view to the (ethical) acceptability, sustainability and societal desirability of the innovation process and its marketable products (in order to allow a proper embedding of scientific and technological advances in our society).
This definition was not proposed as an end-result but as a starting point for an ever-growing field of research and innovation actions. The definition was put forward, first, to highlight that dominant public policies only negatively select science and technology-related options, notably by the management of their risks. According to the still dominant ideology, all innovation will contribute to common prosperity regardless of its nature. The notion of responsible research and innovation makes a radical break with such an ideology. Furthermore, this ideology tells us that innovations cannot be managed or be given a particular direction. Also on this front, the notion of responsible innovation breaks with this ideology and puts the power for a socially desirable change through innovations into the hands of stakeholders and engaged citizens. However, these stakeholders have to become, or be incentivized or even enforced to become, mutually responsive to each other in terms of social commitments to such change.
René von Schomberg
René is Guest Professor at the Technical University of Darmstadt, Germany. He was a European Union Fellow and Guest-Professor at George Mason University, USA, from 2007 to 2008 and has been with the European Commission from 1998 to January 2022. In his research project as a senior fellow at c:o/re, he focusses on the values of “openness” and “responsibility” in science policy.
Andoni Ibarra
Andoni is Professor of Philosophy of Science at the University of the Basque Country (UPV/EHU). He is also the Principal Investigator of PRAXIS Research Group, the founder of the Miguel Sánchez-Mazas Chair. As a senior researcher at c:o/re, he is developing an anticipatory governance framework aimed at assessing and guiding the implementation of responsible anticipatory practices in research and innovation in the field of nanotechnologies.
Responsible Research and Innovation (RRI) imposes normative requirements on research and innovation processes resembling three successive steps of an incremental higher ambition with distinct features. The distinct features reflect the normative requirements of firstly, credible research (through among others ‘codes of conduct’ and standards for scientific integrity), secondly responsive research (by opening up science to societal demands), and finally responsible research (which includes the anticipation on socially desirable outcomes) for the research dimension. Equally distinct features reflect the requirements of credible innovation, responsive innovation, and responsible innovation (Von Schomberg, 2019).
For each of these steps, a framework for good practice is needed. The contributions to the workshop “Open Scholarship, Responsible Innovation and Anticipatory Governance” that took place on June 29-30, 2022, at the Käte Hamburger Kolleg: Cultures of Research, can be seen as attempts to contribute to these good practices for a single step or for multiple steps. First, the creation of knowledge in science underlies distinct universalizable codes for ‘good’ research conduct, enabling a global research practice that is virtually independent of cultural and national constraints. As the previous director of the US National Science Foundation Subra Suresh put it: ‘Good science anywhere is good for science everywhere’. The issue of ‘what is good science?’ can be seen as purely internal matter of the scientific community. Indeed, it has always been scholarly societies or academies of science who have tackled this issue of credible research, which arguably also constitutes the most basic requirement of RRI.
However, we should not forget these scholarly societies and other scientific institutions only engaged with the internal issue of good scientific conduct and scientific integrity because of external societal pressure and clear ethical challenges. That this is an issue which is far from settled.
Yet, Responsible Research and Innovation with within its dimension of ‘open scholarship’ has put additional pressure on revising or extending the normative requirements of this first step for RRI governance, namely credible research and thereby calling for revision of existing codes of conduct for good science particular with a view on achieving credible, reproduceable and re-usable data, all necessary to enhance science as such.
Open research and scholarship can be defined as ‘sharing knowledge and data as early as possible with all relevant knowledge actors‘ (Von Schomberg, 2019). Open research and scholarship (in the research policy-making context often simply referred to as ‘open science’) is operationalised by researchers who use, re-use and produce open research outputs such publications, software and data and who engage in open collaboration with other scientists, as well as seek, whenever appropriate for the subject matter of study, open collaboration with knowledge actors external to science such as industrial organisations, civil society organisations or public authorities.
During the Covid-19 pandemic, we have witnessed a change in the modus operandi of doing science as public authorities started to incentivize open science globally. This made it possible to deliver swiftly on vaccines. Without open science, the market introduction of these vaccines would have taken, under the usual circumstances of competitive and too closed forms of science, minimally a decade.
The research value ‘openness’ can be seen as a constitutional value for the scientific community as such. Open scientific discourse, the exchange of ideas and competing approaches is fundamental for the progress of modern science. ‘Openness’ is presupposed by the Mertonian norm ‘Communism’ (common ownership of scientific discoveries) and thus part of the ethos of science (Merton, 1942). However, the meaning of ‘openness’ is manifold and is dependent on the scientific discipline or the scientific mission in which it is embedded. With the emergence of Open Science, equally ethical issues concerning the limits to ‘openness’ in particular contexts become evident, such as the employment of sensitive data in security or biomedical fields.
Open research and scholarship manifest itself notably in the case of interdisciplinary scientific cooperation with a view on developing a socially desirable output as the case of Covid-19 demonstrated. Open research and scholarship have been incentivized with a view of making science more efficient (better sharing of resources), more reliable (better verification of research data) and making it more productive with a view on a socially desirable output (in this case a vaccine). Research virtues or norms have been phrased historically as a subset of general human virtues. From the Mertonian CUDOS norms (Merton,1942) to the codified principles of research integrity incorporated in the All European Academies’ European Code of Conduct for Research Integrity, norms or principles have been described as a fundament of a ‘good’ research practice. The ‘responsibility’ of the scientific community is then often described as an overarching duty to promote, manage, and monitor a research culture that is based on the scientific integrity of its members (ALLEA, 2017). Furthermore, research integrity does include a particular form of responsibility, namely the accountability for the whole internal process of science from idea to publication. The ‘implementation’ of scientific integrity is managed by self-regulation of the scientific community.
Traditionally the scientific community has stopped short of taking any form of responsibility for consequences and side-consequences of the societal use of scientific insights and technologies and its unpredictable societal impacts. The responsibility for those consequences has been ‘allocated’ to the political system. This division of responsibilities has become subject of intense debate, virtually since the whole period after Word War II. Intense debate on the risks of emerging technologies have led to the adoption of national laws and European directives on the risks, the quality and efficacy of products arising from the use of new technologies. Western societies have gained the capacity to indirectly govern emerging technologies, notably through its risk management and to outlaw specific undesirable outcomes, such as cloning human beings. Our institutions have thus governance structures in place to manage the risks of technologies such as nuclear technology, genetic or nanoengineering. However, we do not have established capacities to anticipate or direct science and innovation towards socially desirable outcomes such as vaccines or outcomes that underpin or make the transition towards sustainability possible. Responsible Research and Innovation (RRI) has emerged as response to this deficit in the governance of science and technology. RRI requires a form of governance that will either direct science towards socially desirable outcomes or manage innovation processes in such a way that those socially desirable outcomes are more likely to emerge (Von Schomberg 2019).
It is therefore desirable to develop further a governance framework which institutionalizes the organization of co-responsibility across the spheres of science, policy and society on a subject matter which require open science missions such as Covid-19. The institutionalization of co-responsibility requires a governance which goes beyond self-regulating mechanisms within science itself. There is a ‘responsibility’ for ‘organizing co-responsibility,’ shared by scientific, policy and societal actors. The institutionalization of this responsibility will have consequences for the way science is funded and organized, for example through policy and financial incentives to embark on socially relevant open research missions. For example, by means of co-creation and co-design of research agendas with scientific, policy and societal actors which are currently foreseen in the “Horizon Europe (2021-2027)” program. An important aspect is the governance of the research missions themselves. When open research missions are conducted to achieve a socially desirable objective, its governance and organization will significantly have to differ from research missions with a primary technological objective (for example: ‘putting a man on the moon’). In fact, the ultimate step to complete RRI with anticipatory governance is inherent for this type of mission-oriented research.
The governance of research of innovation based on a Framework of RRI thus requires credible research, open and responsive research and responsible research that anticipates socially desirable outcomes. This anticipation also presupposes that such research and innovation is inevitably value-driven as those values mark the desirability or undesirability of research and innovation outcomes.
The desirability of open scholarship is often motivated by the wish to achieve better scientific practices. However, RRI is more ambitious and represents an effort to drive research and innovation towards socially desirable outcomes. We, therefore, must address the question how we can define these outcomes, for example by the way we anticipate them. The employment of foresight is one of the few tools we have at our disposal, and possibly the most robust one. Broadly speaking, anticipation can be defined as an activity characterized by the use of the future (or futures) to guide and orient decision making in the present. Anticipation must therefore be distinguished from forecasting.
The question of socio-technical futures is critical in this context because the ways in which scientific and technological practices are articulated derive from the anticipatory capacity, that is to say, from the capacity to promote certain research and innovation trajectories in the present on the basis of visions and expectations regarding future promises. Therefore, anticipatory responsibility goes beyond the traditional tendency to approach responsibility as a mere regulatory exercise; an exercise in which the socio-economic justification of scientific or technological innovations is not problematized, on the basis of future promises linked to them. This activity of futures building opens the door to publics. Anticipatory governance is an instrument for the engagement of publics in the exercise of opening science and innovation that should contribute to a more robust articulation of the relations between societal actors.
Anticipatory innovation processes are understood as open and deliberative processes, in which the values, motivations and expected benefits of innovations appear to be subject to public scrutiny. As such, the understanding of those anticipatory innovation processes emphasizes the need to critically and openly analyze the ways in which socio-economic and environmental challenges and their potential solutions are established. This implies recognizing anticipation as a fundamental component of responsible governance; a component that enables the construction of “socio-technical futures” as a guide for decision-making in the present. It is fundamental because anticipation becomes the component that modulates the degree of responsibility of responsible open scientific-technological practices. However, despite its central relevance, the meanings of anticipation and anticipatory governance are divers, often disparate, if not contradictory, as Mario Pansera showed in his presentation.
In this context of plurality of meanings, the risks of the very concept of anticipatory governance for the achievement of more responsible science and innovation should not be forgotten, as Alfred Nordman and others have shown. Not only because some anticipatory governance understandings close down the field of possible alternatives and courses of action. (We can call them closed anticipatory governance patterns.) The risks arise above all, however, because anticipatory governance is permanently connected to the risk of instrumentalisation by an innovation system highly committed to techno-industrial developmentalism and economic competitiveness. Therefore, its contribution to responsible science and innovation and its transformative potential should not be taken for granted. Attention needs to be paid to the way in which power relations and instrumentalisation dynamics characteristic of innovation systems tend to exclude, or to close down, the emergence of alternative ways of approaching scientific-technical co-creation. That’s why, among other things, the transformative potential of anticipation towards more responsible forms of scientific practice has to remain analyzed and explored.
Reference
All European Academies (2017), The European Code of Conduct for Research Integrity: https://allea.org/code-of-conduct/
Burgelman J-C, Pascu C, Szkuta K, Von Schomberg R, Karalopoulos A, Repanas K and Schouppe M (2019), Open Science, Open Data, and Open Scholarship: European Policies to Make Science Fit for the Twenty-First Century. Front. Big Data 2:43.
Merton, Robert K. 1979 [1942]. “The Normative Structure of Science.” In The Sociology of Science: Theoretical and Empirical Investigations. Chicago: University of Chicago Press.
Von Schomberg, R (2019), Why responsible innovation in: R. Von Schomberg and J. Hankins (eds) International Handbook on Responsible Innovation: A Global Resource. Cheltenham: Edward Elgar, pp. 12–32.
Rene runs a blog with free downloadable resources on RRI: https://Renevonschomberg.wordpress.com
proposed citation: René von Schomberg and Andoni Ibarra (2022). Introduction to the concepts of Open Science, Responsible Research and Innovation and Anticipatory Governance. https://khk.rwth-aachen.de/2022/07/25/3892/3892/